
Introduction
With the right analytics tools, enterprises can grow their investment in data by
making data-driven decisions and bridging the gap between cross-functional teams,
data scientists, and software engineers. This implementation guide explains how to
adopt machine-learning solutions to help your organization stay competitive and
identify opportunities to optimize a big data solution.

End-to-End Optimized Machine-Learning Pipeline
The solution documented here demonstrates how foundational, reusable components
can be used to develop an end-to-end machine-learning pipeline, using the Cloudera
Distribution for Hadoop and Apache Spark. Additionally, it showcases how to tune
and scale the solution to maximize utilization of the data center resources powered
by Intel® products. These products include Intel® MKL, Intel® Turbo Boost Technology,
Intel® HT Technology, and Intel® AVX-512.

Our testing revealed that end-to-end optimization and Intel MKL resulted in an overall
21.4 percent performance boost compared to not using Intel MKL, as measured by
total time.1 For the model training stage in particular, Intel MKL accelerated the ALS
algorithm up to 2.37x (depending on the value of the rank parameter).1

Machine Learning in the Financial Services Industry
The use cases discussed in this paper are drawn from retail consumer banking. However,
the methodology shown in this reference architecture can be applied to many other use
cases such as consumer retail, insurance, health and life sciences, manufacturing, energy,
and transportation. Retail banks use financial technology to engage with their customers
and expand their operations. Financial services organizations can use analytics solutions
to recommend a variety of products and services to consumers. These include a new
checking or saving account, credit cards, and lending services. The latter could be for
automobiles, homes, or education, or refinance packages with attractive rates. Other
services include asset and investment management (stocks and bonds) and international
banking. The major challenge faced by banks—or any industry—is clearly understanding
customers’ needs and their choices, and using that knowledge to drive business and
influence customers’ buying decisions.

Create a scalable, reusable machine-learning architecture based on Intel®
technology and open source software that can solve real-world business
problems in retail banking and other industries

Implementing End-to-End
Predictive Analytics Solutions

Implementation Guide
Big Data Analytics | Machine Learning on Intel® Platforms

Benefits of an FSI
Recommendation System

A good recommendation system
can help provide the following:

• Data about direct feedback
from consumers relating to
their satisfaction with products
and services

• The ability to influence
customers’ buying decisions
based on their needs

• A consistent customer
experience that can help retain
customers’ trust and interest in
services

• The ability to use the customer
behavior data to drive business
decisions

Table of Contents
Introduction . 1

Accelerating Execution and
Optimizations Using Intel® Technologies . . 2

Solution Overview . 2

Retail Banking Use Cases for Predictive
Analytics and Machine Learning 4

Recommendation Analytics
Use Case Details . 5

Performance . 7

CDH for Predictive Analytics 7

Conclusion . 8

Appendices . 9

Figure 1. Intel® MKL plus end-to-end optimization
improves machine-learning workload performance.

21.4%
IMPROVEMENT

IN MODEL TRAINING
With Intel MKL

Without
Intel® MKL

With
Intel MKL

LOWER IS BETTER
Data Acquisition Data Processing Feature Engineering

Model TrainingModel Inference

1

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 2

Accelerating Execution and Optimizations
Using Intel® Technologies
Intel provides technologies to accelerate the various phases
in a machine-learning workflow. Figure 2 shows some of the
key aspects that can take advantage of optimized hardware
and software integrated with Apache Hadoop. Effectiveness
may vary based on workflow and features, and necessary
benchmarks should be run before and after to measure the
improvements in performance.

Solution Overview
This document describes a reference architecture for
deploying a predictive analytics solution for retail banking.
The end-to-end machine-learning pipeline is based on the
CDH platform on Intel® architecture and adjacent technologies.
Figure 3 provides an overview of the building blocks for this
solution architecture. Each data engineering or analytics stage
defines its API, which helps data scientists and data engineers
to standardize the data exchanges across multiple use cases.

Data Engineering
Churn Analytics, Credit Risk
Analytics, Recommendation

Analytics, Clustering Analytics

Intel® Xeon® Scalable Processors and
Intel® Architecture-based Components

Red Hat Enterprise Linux

Cloudera Distribution of Hadoop

Storage

Solution Architecture:
Retail Banking Machine Learning Analytics

KuduParquet

D
at

a
V

is
ua

liz
at

io
n

Su
gg

es
te

d
Co

m
po

ne
nt

Data Generation
Scale Factor

YARNSpark PDGF

 OozieHDFS

Hive

YARNParquet

 ZooKeeper

HDFSSpark

Data Acquisition

HDFSSparkFlume

HiveParquet

Interface

Workflow

Retail Banking
Simulated Data

Figure 3. Our machine-learning reference architecture is built
on Intel® technologies and CDH and uses many open source
tools to support several predictive analytics use cases.

The predictive analytics workload for retail banking includes
the following modules:

• Workflow represents the pipeline execution sequence,
dependencies, and data flow, including the configuration files,
workload input parameters, and storage paths (see Figure 4).Machine Learning Data Workflow

Data Lake

Configuration
Staged Data

Data

Load Data JAR
Collection

Model
Repository

Instantiate
Workflow

Create
Graph

Load
Class

Node
Execute()

Last
Node?

End

Yes

No

ETLETL ETL

Figure 4. Workflow for creating and managing the data flow
in a machine-learning pipeline.

• Interface provides the abstraction for machine-learning
stages or nodes in the pipeline implementation.

• Data source represents a subset of data collection from
multiple internal and external data sources in a banking
environment and third-party vendors (see Figure 5).

• Data acquisition for data storage and management of
the staging dataset (performs ETL operations on Hadoop
Distributed File System [HDFS]).

• Advanced data pipelines for predictive analytics use cases
using the banking data model. Each use case can configure
one or more data engineering stages: preprocessing, feature
engineering, model training, and model inference. See the
sidebar Sample Predictive Analytics Use Cases.

• Model storage to store and manage the model metadata,
model type, parameters, and files after the feature
engineering and/or model training stages in the pipeline. The
model and metadata both are captured for future analysis.

• Data storage to store intermediate results during the
workflow, including reading and writing to tables.

Data
Acquisition Preprocessing Feature

Engineering
Model Training
and Inference

Data
Storage

• Intel® HT Technology
• Intel® Turbo Boost Technology
• Intel® QAT for data

compression
• Intel® AES-NI

for fast encryption

• Intel® HT Technology
• Intel® Turbo Boost Technology
• Intel® QAT for data

compression
• Intel® Ethernet Adapters for

25 GbE/40 GbE networking
• Intel® AES-NI

for fast encryption

• Intel® HT Technology
• Intel® Turbo Boost Technology
• Intel® MKL acceleration
• NVMe-based Intel® SSDs

for fast shuffles

• Intel® HT Technology
• Intel® Turbo Boost Technology
• Intel® MKL acceleration
• Intel® AVX-512 instructions

• Intel® HT Technology
• Intel® Turbo Boost Technology
• NVMe-based Intel® SSDs for

optimized and reliable storage
• Intel® Optane™ SSDs

for low latency

Accelerating Execution and Optimizations Using Intel® Technologies

Figure 2. Intel® technology can accelerate machine-learning workloads using built-in features of the Intel® Xeon® processor
Scalable family and other optimizations such as Intel® MKL.

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 3

The intermediate staging results are stored on HDFS in
Parquet format, managed by Hive; The final prediction
results are stored on Apache Kudu for fast access to verify
the quality of predictions.

The interface and workflow modules make the machine-
learning pipeline more abstract, decoupled, and reusable
with modularized configurations to control the data flow.
For example, the submodules (preprocessing, feature
engineering, model training, and model inference) allow a
data scientist to modify a specific implementation of the
submodule and quickly plug the changes into pipeline as
desired. This solution includes the complete reference
binaries and the dataset.

Simplified Retail Banking Data Model
Typically, banks implement a proprietary system to meet
their custom needs for processing transactions, creating
reports, or handling customer queries. Common examples
of such systems include the Oracle Financial Services Data
Warehouse and the SAP Business Warehouse for banking
and financial services. Several other similar solutions are
available, as well. Figure 5 provides a high-level logical
depiction of the physical data warehouse implementation for
retail banking. Note that Figure 5 is an illustrative example
only; a full-fledged banking data model will be far more
complex and is outside the scope of this paper.

Banking Logical Data Model
Illustrative Example Only

Transaction Database Subjects may include Products,
Party, Location, Calendar, Contacts, Instruments,

and Accounts, and Transactions and Events

Reporting
Warehouses

Staging for
Analytics

Transactional
Databases

Figure 5. The retail banking logical data model consists of
several transactional databases, a staging area for analytics
(often called the enterprise data warehouse or EDW), and
reporting warehouses.

Overall, the logical data model consists of the following:
• Transactional databases. These stores are typically updated

very frequently as new events occur. Enterprises use relational
stores to implement these data models. This space is mature
enough to accommodate lower latencies and to scale both
horizontally and vertically to handle higher throughput.

• Reporting warehouses. These stores are typically created
for reporting purposes and are accessed on an on-demand
basis. The report generation is usually a batch process running
on a periodic schedule such as nightly, weekly, monthly,
quarterly, or yearly. Typically, enterprises model these as
large-scale data integration jobs that can be horizontally
scaled and do not have any latency constraints. Traditional
business-intelligence and data-integration frameworks, such
as Informatica Data Integration Hub and Oracle Fusion, act as
intermediaries to orchestrate these jobs. Recently, enterprises
have started using MapReduce-based frameworks such as
Apache Hadoop and Spark to make these processes more
robust and fault-tolerant while being able to scale horizontally.

• Staging for analytics. A middle ground exists where
necessary data is either staged as-is or preprocessed and
aggregated for further decisions based on analytics. In
this guide, we focus on this staging warehouse and refer
to it as the EDW. This staging area is typically updated on
a schedule so that analytical jobs are run in a cadence that
provides meaningful results in the time frame during which
the data was collected. The EDW is also shared among
many data scientists and application developers, so they
most likely use only certain tables from this store.

Sample Predictive Analytics Use Cases
The four sample use cases for retail banking are as
follows:

Recommendation analytics. Recommendation systems
in banking and finance help guide users or customers to
discover new products based on implicit feedback from
other similar customers, their activities, and preferences
relating to the services that they use currently. We discuss
the implementation and performance for this use case in
greater detail in this guide.

Customer analytics for predicting customer churn.
Churn prediction analytics helps to identify customers
who might stop using banking services or might be
inclined to switch to competitors. We treat the analysis
as a binary classification model (just two classes) where
the customer will either churn or stay. If the prediction
value is true, then there is a high likelihood that the
customer might stop using some or all the services.

Customer analytics for predicting credit risk. Credit risk
analytics helps to identify clients or potential applications
that might be high-risk given their financial portfolio and
historical transactions. Usually, credit risk is computed
using a variety of external factors such as credit scores,
balances across all financial assets, and the debt products
owned by the customer. However, to simplify our use case,
we assume that all information has already been gathered
by the data acquisition engine and is part of the banking
data model. To extend the source to other data points,
appropriate changes should be made to the EDW steps
such as integration with other third-party services.

Customer segmentation analytics for user behavior
modeling. One of the many requirements of a financial
services provider is to better understand the categories
of customers so that the provider can model its
services while maximizing target penetration. This type
of modeling is often achieved using clustering and
identifying the similarities or associations in the available
data. Once the clusters have been identified, necessary
actions or strategies can be developed for each segment.

Note: Only recommendation analytics is discussed in
detail in this paper.

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 4

Figure 6 illustrates a banking EDW model that shows relationships
between different fact tables such as Product, Loans, and Credit
Cards. (Note that a real-world EDW model would be far more
complex.) Various combinations of these tables are used by data
scientists and application developers. For example, the Product Order
table acts as the central table, which typically captures a product
that the bank offers, contains a link to the account with which it is
associated (a client could have multiple accounts), and the client ID
(for aggregation and analytical purposes).

In Figure 6, variable names in italics indicate the foreign keys. The
arrows represent the foreign key relationship between tables. Variable
names in bold are the target fields in the machine-learning pipeline
that we are trying to predict and are used as ground truth (to measure
the accuracy of the training set’s classification for supervised learning
techniques). These target variables for the use cases are as follows:
• The recommendation analytics target is an implicit rating based

on the Product Order table.
• The customer churn analytics target is account_status from the

Account table.
• The customer credit risk analytics target is risk from the Client table.
• The customer segmentation analytics target is based on review

entered in the Client table.

Retail Banking Use Cases for Predictive Analytics
and Machine Learning
The banking data model shown in Figure 5 provides a solid
environment for using machine-learning and analytical techniques
to derive insights from transactional and customer data.

Figure 7 illustrates three suggestive pipelines that benefit
from machine learning and analytics: a recommendation
analytics pipeline, a customer analytics pipeline, and a customer
segmentation analytics pipeline. The customer analytics pipeline
supports several use cases including churn analytics and credit
risk analytics. In the figure, the highlighted boxes represent
where Intel MKL can be used to accelerate performance. Figure 6. The typical retail banking EDW consists of

many transactional databases and tables.

Analytics Use Case Pipelines

Missing
Value

Imputation

Exploratory
Data

Analysis
Feature
Creation

Dimensionality
Reduction

Train
Model

Data Split
(Train/Test)

Model
Selection

Cross
Validation

Hyper-
Parameter

Grid
Search

Model
Versioning

and
Export

Test/
Evaluate

Model

Classification
Model Churn

Analytics

Train
Model

Data Split
(Train/Test)

Model
Selection

Cross
Validation

Hyper-
Parameter

Grid
Search

Model
Versioning

and
Export

Test/
Evaluate

Model

Classification
Model Risk
Analytics

Missing
Value

Imputation

TF
IDF

Exploratory
Data

Analysis

Feature
Creation

Dimensionality
Reduction

Train
Model

Data Split
(Train/Test)

Hyper-
Parameter

Grid
Search

Model
Versioning

and
Export

Model
Selection

Cross
Validation

Test/
Evaluate

Model

Clustering
Model

Missing
Value

Imputation

Exploratory
Data

Analysis

Feature
Creation

Train
Model

Data Split
(Train/Test)

Model
Selection

Cross
Validation

Test/
Evaluate

Model
Boosting Recommendation

Model

Model
Versioning

and
Export

Hyper-
Parameter

Grid
Search

Recommendation Analytics

Customer Analytics

Customer Segmentation Analytics

Machine-Learning Algorithm Intel® MKL Acceleration Feasible

All
Master

Data
Tables

Model
Store

Figure 7. Several retail banking use cases can benefit from machine learning.

Banking Staging Data Model

Client

client_id
join_date
birth_date
education
employment status
gender
is_mobile_user
marital_status
branch_id
zone_id
risk
review

Customer Service

service_id
client_id
product_id
reference_id
service_description
service_status

Demographics

zone_id
branch_id
avg_salary
unemployment_rate

transaction_id
reference_id
product_id
transaction_date
transaction_type
transaction_amount

Account

account_id
client_id
product_id
creation_date
account_balance
account_status

Product Order

client_id
product_id
order_id
order_date
order_status

Product

product_id
product_name
product_type
is_credit
processing_fees
credit_base_limit

Transaction

Debit Cards

card_id
account_id
product_id
creation_date
account_balance
card_status

Credit Cards

account_id
client_id
product_id
creation_date
withstanding_bal
card_status

Loans

loan_id
client_id
product_id
loan_creation_date
loan_amount
loan_status

Insurance

insurance_id
client_id
product_id
policy_start_date
premium_amount
auto_renew

Investment

investment_id
client_id
product_id
order_creation_date
investment_amount
investment_status

Taxation

tax_id
client_id
product_id
service_date
service_fees
service_type

Payment

payment_id
client_id
product_id
payment_date
payment_amount
payment_from

Illustrative Example Only

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 5

We discuss only the recommendation analytics use case in
detail in this paper. The following section provides more
information about the individual stages in data exploration
and data science adoption of the pipeline.

Recommendation Analytics Use Case Details
The following sections describe the dataset used for testing
and discuss the step-by-step machine-learning stages in
the recommendation pipeline—from acquiring data and
preprocessing to model training and inference.

Dataset
The data for the recommendation system is obtained from
several tables (as shown in Figure 6), to understand the
customers’ financial portfolio and daily interactions.

• The Client table records the customer enrollment and
demographics information.

• The Product table comprises information regarding
products and different types.

• The Account and Investment tables capture the different
accounts like savings, checking, premium services, and
enlists the accrued invested funds towards retirement
and wealth plans.

• The Credit Card and Loan tables track the outstanding
amount on active credit and loans accounts.

• The Transaction and Payment tables maintain the
aggregated amount for the flow of money between
different clients, accounts, and card services.

• The Taxation, Insurance, and Customer services tables
capture the other miscellaneous services occasionally
provided to clients.

We used a highly customizable third-party data generation
tool, Parallel Data Generation Framework (PDGF), to simulate
the reference banking data. It is based on the probability
distribution adapted from the census income dataset and
models some of the client demographic information such
as marital status, education level, gender, capital gains, and
work hours per week.

Data Acquisition and Preprocessing
Many enterprises have faced the challenge of maintaining
legacy MapReduce code base. Hive provides flexibility to
quickly adapt Spark processing for analysts/developers
with SQL background. Hive on Spark (HoS) is more suitable
for complex workloads with multiple MapReduce stages
involving shuffle, union, and join operations. In contrast,
Hive on MapReduce (HoMR) can suffice for queries with
a small number of stages. We recommend using HoS for
better performance.

Using the HDFS command-line interface or Flume, data is
loaded into HDFS, a fault-tolerant replicated distributed
filesystem. We then load the dataset using Hive in Parquet
format. We also provide options for other formats like
TextFile, CSV, and ORC. Hive provides SQL-like familiarity
and makes it easy to manage and analyze the data on HDFS.
Parquet provides columnar storage with compression and
encoding for efficient ETL operations. CDH v6 supports
vectorization on Intel architecture for Parquet and ORC
formats. In vectorized query execution, data rows are

batched together and represented as a set of column vectors.
Cloudera recommends using Parquet for optimizations using
vectorization because of the available support for Parquet
across other components. Hive also provides scalability,
redundancy, and extensibility. In our experiment, we have
observed up to 2.8x compression for Parquet compared
to the TextFile format for Hive tables (see Appendix C: Data
Acquisition – Compression Benefits for Hive on Spark with
Parquet Format).

Upon acquisition, we identify the different tables and relevant
features useful in model training, change the data types, and
then join the aforementioned tables to create staging tables
with tuples (client_id, product_id, aggregated_features, and
so on), grouped together to retrieve aggregated features
resulting from joining different tables.2 It’s not plausible to
get direct feedback like product ratings from clients for each
product consumed by them. Therefore, the rating needs
to be derived from customers’ interaction with different
accounts, products, investments, and card services. These
aggregated features are later used during feature engineering
for computing the feedback on respective products (see
“Feature Engineering”). The relative latest activity should be
given more weight in computing the feedback for respective
products. To consolidate data across all clients and products,
we created the following denormalized tables:

• The Product Order table summarizes purchased products
by the customer over years of business with a bank.

• The Recommendation Ratings table filters for the last
X years to adjust the training dataset size.

The initial value for a product’s base rating is solely
based on when the product was purchased (that is, order
placement data). The resulting columns after joins are
checked for null values and substituted with default
values. We recommend storing the intermediate results at
the end of each stage of the workflow and deleting those
intermediate results after successful completion of the
next stage. This may help avoid re-runs due to errors in a
module and may also ease debugging issues in the data flow
between processes and verification of module functionality
during runtime. The data acquisition and preprocessing
steps include performing complex queries including union,
joins, sum, count, average, filter, and windowed operations
on Parquet tables managed by Hive.

We recommend tuning the Hive configuration during
the data acquisition and data preprocessing, modifying
parameter values based on the scale factor. To learn more
about detailed configuration and tuning, refer to the Hive or
Cloudera documentation.

Feature Engineering
The feature engineering module selects the data to be fed into
the model training step. Typically, dimensionality reduction,
boosting, regularization, one-hot encoding, indexing, and
normalization are the most common steps data scientists use
to prepare the data before it is ready for model training.

For product recommendation analytics, we compute delta
ratings as an effect of customers’ behavior (such as purchasing
activity) from different tables to influence the estimates of
the base rating as mentioned previously in the preprocessing
stage. The base rating is further augmented based on client

https://archive.ics.uci.edu/ml/datasets/census+income
https://docs.cloudera.com/documentation/enterprise/6/6.2/topics/hive_query_vectorization.html
https://blog.cloudera.com/faster-swarms-of-data-accelerating-hive-queries-with-parquet-vectorization/
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-HiveConfigurationVariablesUsedtoInteractwithHadoop
https://www.cloudera.com/documentation/enterprise/latest/PDF/cloudera-hive.pdf

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 6

demographics and product type. For example, demographics
information like is_home_owner, employment_status, annual_
income, is_mobile_user, mobile_alerts_on, customer_type, and
is_social_profile_connected are used to influence rating values
for products designed for relevant types of customers. The
historical transactions with different products (such as number
of credit cards, saving accounts, loans, seasonal promotions
for new accounts for students and taxation services) are used
to boost the respective product’s rating. This changes the
ratings from explicit to implicit feedback, because we use
other features to internally compute the rating value. For
more information on explicit versus implicit feedback, refer
to the discussion on the spark.org site.

Additionally, the various delta ratings are computed from the
other tables and added up to the final product rating for model
training. The MaxAbsScaler is used to measure the weight of
features like number of active accounts, sum of invested amount,
number of active credit cards, outstanding balance in loan
accounts, and volume of payment and transaction amounts
across all clients and products. Spark ML has a dedicated feature
package (org.apache.spark.ml.feature) that provides useful
classes and functions to transform the features to simplify
the effort for data scientists. For example, VectorAssembler,
StandardScaler, Normalizer, Bucketizer, OneHotEncoder,
StringIndexer, and Tokenizer are commonly used.

Model Training and Cross-Validation
Collaborative filtering and content-based filtering are among
the frequently used algorithms for recommendation systems.
We use the Alternating Least Squares (ALS) implementation
of collaborative filtering to learn the latent factors necessary
to build our recommender.

USING ALS3

For clients (client_id) and products (product_id), the
algorithm starts by creating an c x p matrix R where r is the
computed rating value (product_rating) for each product (p)
and each client (c):

Rcp = CPT

Rcp = { r if client c ordered product p
0 if client c did not order product p }

The goal is to factorize the rating matrix R into two: matrix
C (client factor) and matrix P (product factor), using a small
number k, such that C summarizes each client c by k vectors
and P summarizes each product p by a k-dimensional vector.
For each iteration, the algorithm first optimizes P by fixing C
and, then fixes P and optimizes C, for the given rating matrix
Rcp. We repeat this optimization cycle for a defined maximum
number of iterations. The cycle must be tuned to reach a
convergence point where the iterative changes in the two
matrices are quite small.

IMPROVING THE ALS MODEL
We use Spark ML Pipelines to build a PipelineModel or
CrossValidatorModel that runs across several regularization
parameters and performs k-fold cross-validation. All
these parameters are configurable for data scientists to
run different hypotheses. For comparing models, we use
RegressionEvaluator, which uses Root Mean Squared Error
(RMSE) as the metric to evaluate ALSModel. Finally, we

package the algorithm model, grid for parameter tuning,
and model evaluator into the stages of the PipelineModel
(or CrossValidatorModel if cross-validation is enabled).

For improving model performance, we have incorporated
various parameters from the ALSModel class. We set
ImplicitPrefs as true, to indicate that the rating value is a
derived value and not readily available from customers. The
confidence in this derivation can be controlled by setting
the value for Alpha, with a default value of 1. The rank k
parameter represents the number of latent factors and is set
to 40 in the default configuration file. We found that tuning
the number of partitions as a multiple of the total number of
cores available on all workers is most useful in increasing the
parallelism for Spark jobs. To improve performance in the
distributed ALS algorithm, we experimented with intermediate
user and item factors (that is, ProductBlocks and
UserBlocks.) These factors control the number of blocks that
are cached in memory during runtime by the ALSModel. This
helps to reduce the shuffle of feature vectors between workers.
Refer to Spark ML ALS documentation for more details.

Model Storage
The output of the CrossValidatorModel or PipelineModel is
stored on HDFS and a corresponding entry is input into the
“model_catalog” table in Kudu, which is managed by the
Model Storage module. The CrossValidatorModel returns the
best model from the different k-fold validations executed on
the training dataset. The cross-validator internally represents
the best model as well as the metrics that helped it determine
how the model was selected. The model catalog includes
model version, timestamp, parameters, model path, and
validation accuracy on the test dataset. These stored models
and their metadata can enable decision makers to choose
which model to load for inference, based on whether the
business needs the model provisioning services to be more
accurate or faster.

Model Inference
The solution offers different types of model selection policies
from the model catalog for a particular use case. Users can
specify their choice in the configuration as

• Specific. Uses a universally unique identifier (UUID) for the
model to be loaded

• Best. Chooses the model with the lowest cost/error value

• Latest. Chooses the last trained model for that pipeline

The inference pipeline is similar to the training pipeline,
except it uses the transform method on the trained model
to obtain recommendations for the new set of clients and
services. The inference job can be executed on demand
or as a scheduled job on a batch of features. Scheduled
jobs tend to optimally utilize cluster resources. The feature
values are typically pre-computed and stored using batch
inference jobs that run on a weekly or monthly cadence.
The recommendations are sorted prediction scores of how
likely the client is to subscribe to the service or purchase a
product. Usually, we select the top k products (where k lies
between 3 to 10) with the highest predicted ratings, and
these recommendations are proposed to the clients as part
of a marketing campaign. These prediction results are stored
in datastores like Kudu for faster retrieval.

https://spark.apache.org/docs/2.2.0/ml-collaborative-filtering.html#explicit-vs-implicit-feedback
https://spark.apache.org/docs/latest/ml-features.html
https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/mllib/recommendation/ALS.html

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 7

Model Drifts
Model training is a continuous process; without regular
model training, the customer experience can degrade. Model
accuracy can be affected by the rate of increase in the number
of clients and products and a product’s frequency of use and
popularity. Over time, a model can succumb to model drift.4
When customers pursue certain recommendations or update
their ratings, it creates a feedback loop and requires the model
to be re-trained on new data. It is possible to understand
the impact of this feedback and analyze this information to
prevent model drift. The frequency of model training depends
on the business need and cost constraints; however, it is
critical in some industries such as online retail services to
stay competitive and relevant. Enhancements suggested in
the paper, “Deconvolving Feedback Loops in Recommender
Systems” could be added to improve model accuracy.

Performance
In the recommendation pipeline, each stage exhibits slightly
different workload characteristics, and requires optimization
and tuning to maximize utilization of all cluster resources.
For brevity, this guide discusses only two stages in detail:
preprocessing and model training.

The preprocessing stage uses HoS aggregation queries,
which are compute-intensive tasks and include union, joins,
aggregate, and filter operations. We recommend tuning the
garbage collection activity and using vectorization for Hive
queries. These queries scale linearly with additional executor
and nodes.

The model training stage is memory-intensive and requires
fine-tuning Spark memory configurations. We focused mainly
on tuning the parameter rank with respect to the evaluation
metric Root Mean Square Error (RMSE). The rank parameter
indicates intermediate matrix-rank of the Client and Product
matrices that are decomposed from the rating matrix by the
ALS algorithm. The increase in rank impacts the complexity
of solving the two matrices by increasing the number of
matrix operations. This behavior illustrates the need for
more memory to perform in-memory caching for Client
and Product matrices. The Intel MKL parcel for Cloudera
boosts machine-learning and data analytics performance by
accelerating BLAS Level 1 routines and functions (examples
include dot, scal, and daxpy) in Spark MLlib. In this pipeline,
the Intel MKL parcel for Cloudera accelerates the ALS
algorithm up to 2.37x for Rank 160 (see Figure 8).

Intel® MKL Parcel for Cloudera

0

.5

1

1.5

2

2.5

2.37x
IMPROVEMENT

FOR MATRIX RANK 160
With Intel® MKL

R
el

at
iv

e
P

er
fo

rm
an

ce

40 60 80 100 120 160

1.18
1.36

1.57
1.78

2.05
2.37

1.0 1.0 1.0 1.0 1.0 1.0

HIGHER IS BETTER

Matrix Rank

Without Intel® MKL With Intel® MKL

5

Figure 8. Intel® MKL Acceleration for model training using
ALS algorithm (18 worker nodes) SF 2000.

Analyzing the end-to-end pipeline runtime with consideration
for the best model deployment resulted in a 21.4 percent
increase in overall performance, compared to a cluster without
Intel MKL.5 Intel MKL acceleration can enable data scientists to
experiment with other parameters like alpha, regularization
parameters, and cross-validation to fine-tune the model.6

Next Steps
In future tests, we plan to extend our performance testing
by adding Intel® Optane™ persistent memory to the
configuration for running model training with larger rank
values. We can also analyze and optimize for the following
scenarios, creating dedicated resource pools for model
training and the rest of data engineering operations:

• Tuning resources for serving multiple parallel queries

• Running multiple use cases

CDH for Predictive Analytics
Cloudera Distribution for Hadoop (CDH) is an open source
platform that is built entirely on open standards. CDH
includes robust Apache Hadoop 3.0 and Spark 2.x, along with
a variety of other open source components from the big data
ecosystem. This reference architecture uses CDH’s scalable
platform to deploy our machine-learning pipelines and
analytics with the banking data model. Table 1 lists elements
of the open source ecosystem that are used in this reference
architecture. The system requirements and Cloudera role
distribution are listed in Appendix A: System Requirements
and Appendix B: Cloudera Role Distribution - 21 Nodes.
Detailed best practices for cluster sizing can be found here.

Table 1. CDH Open Source Components for Advanced Analytics

Analytics Stage Open Source Tools
Data Acquisition HDFS, Hive, Flumea, Kafkaa, and Scoopa

Data Processing Apache Hive on Spark, Apache Spark and
Structured Streaminga, Hive on Teza

Model Training Apache Spark and Spark ML
Data Storage • Apache Parquet: the column-oriented data

serialization standard for efficient data analytics
• Apache ORC: self-describing type-aware columnar

file format designed for Hadoop workloads
• Apache Kudu: a new, scalable and distributed

table-based storage for hybrid architectures that
handle both transactional and analytics workloads

Model Storage Apache Parquet, Apache Kudu
a Components can be added; currently not included in the reference

architecture.

https://papers.nips.cc/paper/6283-deconvolving-feedback-loops-in-recommender-systems.pdf
https://papers.nips.cc/paper/6283-deconvolving-feedback-loops-in-recommender-systems.pdf
https://docs.cloudera.com/documentation/other/reference-architecture/PDF/cloudera_ref_arch_metal.pdf
https://docs.cloudera.com/runtime/7.0.0/hive-introduction/topics/hive-apache-hive-3-architectural-overview.html

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 8

Apache Spark Optimization
Apache Spark is well integrated with CDH and widely used for
developing analytics pipelines. Spark is easy to use, expressive,
and optimized to achieve high throughput. Apache Spark 2 is
equipped with data serialization, whole-stage code generation,
and an improved catalyst optimizer. The Intel MKL parcel for
Cloudera accelerates Apache Spark MLlib by optimizing the low-
level routines for performing common linear algebra operations.
Examples of such operations include vector addition, scalar
multiplication, dot products, linear combinations, and matrix
multiplication. No application code changes are required to
benefit from Intel MKL acceleration and integration is simple
using the Intel MKL parcel for Cloudera.

Conclusion
Providing a customer-centric experience, with product
and service recommendations that are tailored to specific
customer preferences and behaviors, is an important
aspect of doing business in today’s digital world.
Intelligent recommendation systems, driven by machine-
learning algorithms such as ALS are important. But just
as vital as the actual recommendations is the algorithm’s
overall performance—customers expect near-real-time
recommendations. Our research has revealed that a real-
world machine-learning infrastructure consists of more
than just the machine-learning code. Lack of attention to the
other areas of data analytics (such as storage, BLAS routine
performance, and memory configuration) can sabotage
machine-learning projects.7 For machine learning to deliver
on its promise, it must be based on a solid data engineering
foundation. Specifically, our research demonstrates that
Parquet vectorization for data processing can increase data
compression by 2.8x8 and Intel MKL acceleration for Spark ML
speeds up model training by up to 2x.9

Authors
• Snehal Adsule, Cloud Solutions Engineer, Data Platforms

Group, Intel Corporation

• Shibani Singh, Cloud Solutions Engineer, Data Platforms
Group, Intel Corporation

• Rodrigo Escobar, Cloud Solutions Engineer, Data Platforms
Group, Intel Corporation

• Swepna Doss, Cloud Solutions Engineer, Data Platforms
Group, Intel Corporation

• Amandeep Raina, Cloud Solutions Engineer, Data Platforms
Group, Intel Corporation

Find the solution that is right for your organization.
Contact your Intel representative or visit Intel® Analytics.

References
• White Paper: Hidden Technical Debt in Machine

Learning Systems

• Cloudera: Intel® MKL for Cloudera

• Intel: Accelerate Machine-Learning Workloads with
Math Kernel Library Performance Brief

• Faster Swarms of Data: Accelerating Hive Queries with
Parquet Vectorization

Learn More
You may find the following resources helpful:

• Machine Learning-Based Advanced Analytics Using
Intel® Technology Reference Architecture

• Intel’s Machine Learning webpage

• Intel® Xeon® Scalable Processors

• Intel® QuickAssist Technology

• Intel® Optane™ persistent memory

• Intel® Ethernet Adapters

• Intel® Solid State Drives

• Intel® Select Solutions

https://www.cloudera.com/downloads/partner/intel.html
https://www.cloudera.com/downloads/partner/intel.html
https://www.intel.com/content/www/us/en/analytics/overview.html
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://www.cloudera.com/downloads/partner/intel.html
https://www.intel.com/content/dam/www/public/us/en/documents/performance-briefs/accelerate-machine-learning-workloads-with-math-kernel-library-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/performance-briefs/accelerate-machine-learning-workloads-with-math-kernel-library-brief.pdf
https://blog.cloudera.com/faster-swarms-of-data-accelerating-hive-queries-with-parquet-vectorization/
https://blog.cloudera.com/faster-swarms-of-data-accelerating-hive-queries-with-parquet-vectorization/
https://www.intel.com/content/www/us/en/analytics/machine-learning-advanced-analytics.html
https://www.intel.com/content/www/us/en/analytics/machine-learning-advanced-analytics.html
https://www.intel.com/content/www/us/en/analytics/machine-learning/overview.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html?cid=sem&source=sa360&campid=2020_q3_dcg_us_dcgeg2_dcgeg3_awa_text-link_brand_exact_desk_dcg-enterprise-optane_3001914187_google_b2b_is_pbm&ad_group=brand_eg-optane-persistent-memory_b2b3&intel_term=intel+optane+persistent+memory&sa360id=43700055695158103&gclid=EAIaIQobChMI7-el167k6gIV0D2tBh2ZiACDEAAYASAAEgKVLvD_BwE&gclsrc=aw.ds
https://www.intel.com/content/www/us/en/products/network-io/ethernet.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds.html
http://intel.com/selectsolutions

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 9

Appendix A: System Requirements
Table A1 provides the hardware and software requirements for this reference architecture.

Table A1. Bill of Materials

Hardware Requirements
Processor 21x Intel® Xeon® Gold 6248 processor

(20 cores, 40 threads, 2 sockets)
Memory 384 GB or higher (12x 32 GB, 2933 MHz DDR4, DIMMs)

Boot Drive 1x 960 GB Intel® SSD DC S4500 Series SSDSC2KB96
Storage for HDFS 8x 4 TB SEAGATE ST4000NM0095 for 32 TB storage
Storage for Yarn temporary 2x 2 TB Intel® SSD DC P4510 for 4 TB storage
Data Network Intel® Ethernet Network Adapter X722 (10 GbE)
Intel® Hyper-Threading Technology Enabled
Intel® Technology Enabled
Power-Management Settings Performance

Software Requirements
• Red Hat Enterprise Linux CentOS Linux v7.6 • Hive 2.1.1-cdh6.2.0
• OpenJDK 1.8 • Apache Kudu 1.9.0-cdh6.2.0
• CDH v6.2.0 • PDGF v2.6 (Parallel Data Generation Framework)
• Apache Spark 2.4.0-cdh6.2.0 • Intel® MKL parcel (mkl-2019.5.281)
• Hadoop 3.0.0-cdh6.2.0 • Intel MKL Wrapper Parcel 1.0

Appendix B: Cloudera Role Distribution - 21 Nodes
Table B1 provides information about how the Cloudera roles are distributed across the 21 nodes.

Table B1. Cloudera Role Distribution

Utility Nodes (3) Worker Nodes (18)
Master Node #1:
• Name Node
• YARN Resource Manager
• ZooKeeper #1
• Job History Server
• Spark History Server
• Kudu Master

Utility Node #2:
• Cloudera Manager
• Cloudera Manager

Management Service
• ZooKeeper #2
• Secondary Name Node

Utility Node #3:
• HiveServer2
• Hive Metastore
• Oozie
• ZooKeeper #3
• HDFS Balancer
• Hue Server

• Data Node
• Node Manager
• Hive Gateway
• Spark Gateway
• Kudu tablet server (3 out of 18)

Appendix C: Data Acquisition – Compression Benefits for Hive on Spark with Parquet Format
Our results indicate that the Parquet format conserves considerable storage space—up to 2.8x less total storage space
compared to the TextFile format.

Table C1. Compression Ratios for TextFile versus Parquet Formats

Database Tables

Sizing Formula
Client Factor (CF) = 1000
Scale Factor (SF) = 2000

Raw Data Size
TextFile Format

HDFS Data Size
Parquet Format

Compression Ratio
TextFile: Parquet

Account 1000 * CF * SF 159.9 GB 68.7 GB 2.33
Client 100 * CF * SF 99 GB 78.4 GB 1.26
Credit card 300 * CF * SF 49.2 GB 15.6 GB 3.15
Customer service 10 * CF * SF 1.1 GB 372.7 MB 3.02
Debit card 100 * CF * SF 49 GB 16.9 GB 2.9
Demographics 10 * SF 736.5 KB 420.8 KB 1.75
Insurance 200 * CF * SF 26.8 GB 15 GB 1.79
Investment 200 * CF * SF 21 GB 11.1 GB 1.89
Loan 400 * CF * SF 53.6 GB 24.8 GB 2.16
Payment 200 * CF * SF 103.7 GB 66.2 GB 1.57
Product 60 3.5 KB 4.6 KB 0.76
Taxation 10 * CF * SF 1018.3 MB 425.8 MB 2.39
Transaction and
Transaction Loana

25000 * CF * SF
400 * CF *SF * (Loan Durationa)

6.8 TB 2.2 TB 3.09

Total 7.3 TB 2.6 TB 2.8
a The Transaction Loan table is distributed based on active years, loan duration, and payment schedule for a loan account.

https://www.bankmark.de/products-and-services/pdgf/

Implementation Guide | Implementing End-to-End Predictive Analytics Solutions 10

1 Testing by Intel as of June 24-27, 2020. 21-node cluster. 2x Intel® Xeon® Gold 6248 processor @ 2.50 GHz, Intel® Hyper-threading Technology
ON, Intel® Turbo Boost Technology ON, OS = CentOS Linux release 7.6.1810 (Core), Total Memory = 384 GB (12 slots/16 GB/2933 MHz), BIOS =
SE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c). Software Stack: Cloudera Distribution for Hadoop (CDH) v6.2.0, Apache Spark
v2.4.0-cdh6.2.0, Hadoop v3.0.0-cdh6.2.0, Hive v2.1.1-cdh6.2.0, Kudu v1.9.0-cdh6.2.0, Parallel Data Generation Framework (PDGF) v2.6. Intel
MKL Enablement: CDH Parcels :mkl-2019.5.281,mkl wrapper parcel 1.0

2 A tuple is a sequence (or ordered list) of n elements.
3 More explanation on ALS implementation can be found at the following links:

“Large-Scale Parallel Collaborative Filtering for the Netflix Prize,” link.springer.com/chapter/10.1007/978-3-540-68880-8_32
“Speeding up Distributed Big Data Recommendation in Spark,” arxiv.org/pdf/1508.03110.pdf

4 Model drift, sometimes called concept drift, is when the statistical properties of the target variable, which the model is trying to predict,
change over time in unforeseen ways. This causes problems because the predictions become less accurate as time passes.

5 See endnote 1.
6 See endnote 1 for configuration details.
7 “Hidden Technical Debt in Machine Learning Systems,” papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
8 See Appendix C: Data Acquisition – Compression Benefits for Hive on Spark with Parquet Format.
9 See endnote 1.

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
 Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and

functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
For more complete information visit intel.com/benchmarks.

 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup
for configuration details. No product or component can be absolutely secure.

 Intel Advanced Vector Extensions (Intel AVX) provides higher throughput to certain processor operations. Due to varying processor power
characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel®
Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on
hardware, software, and system configuration and you can learn more at intel.com/go/turbo.

 Your costs and results may vary.
 Intel technologies may require enabled hardware, software or service activation.
 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
 Other names and brands may be claimed as the property of others. 0820/SRIC/KC/PDF 337114-001US

https://arxiv.org/pdf/1508.03110.pdf
https://arxiv.org/pdf/1508.03110.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://www.intel.com/benchmarks
http://www.intel.com/go/turbo

	_Hlk43453804
	_Hlk43454710
	_Hlk46380998
	_Simplified_Retail_Banking
	_Hlk520192052
	_Hlk46381146
	_Hlk46381176
	_Hlk46381312
	_Hlk46914977
	_Hlk46381434
	_Hlk46381526
	Introduction
	Accelerating Execution and Optimizations Using Intel® Technologies
	Solution Overview	
	Retail Banking Use Cases for Predictive Analytics and Machine Learning
	Recommendation Analytics Use Case Details
	Performance
	CDH for Predictive Analytics
	Conclusion
	Appendix A: System Requirements

